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INTRODUCTION 

Arctic ecosystems are subject to severe habitat changes 
and are the most vulnerable to global warming (Virkkala 
et al. 2014). The Arctic tundra has already experienced 
vast changes within the last few decades and faces rapid 
shifts in habitat and species composition, both in altitude 
and latitude (Chen et al. 2011, Engler et al. 2013, Lindström 
et al. 2013, Steinbauer et al. 2018), possibly leading to the 
extinction of many species (Urban 2015). At the same 
time, Arctic-tundra ecosystems are important breeding 
grounds for many migratory bird species, particularly 

waders (Wauchope et al. 2016). They benefit from low 
numbers of predators and exploit the Arctic summers’ 
temporarily available food resources to raise their offspring 
(Tulp & Schekkerman 2008, Lindström et al. 2013, 2015, 
Saalfeld et al. 2013). Species breeding in high altitude- 
and latitude-habitats are particularly sensitive to envi-
ronmental changes since the species co-evolved to suit 
their environmental conditions, which are now changing 
faster than they can evolve (Hof et al. 2016, Scridel et al. 
2018). Wauchope et al. (2016) showed that 66–83% of 
Arctic-breeding wader species will lose the majority of 
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Arctic-breeding birds are of particular conservation concern since their habitats 
are subject to severe changes and shifts upwards in both altitude and latitude 
due to global warming. Detailed knowledge on habitat characteristics of those 
species is required to understand how specialized Arctic-breeding species deal 
with changing habitat conditions. Therefore, sufficient data and methods to 
assess habitat suitability on large spatial scales in a time- and cost-efficient way 
are needed. The Eurasian Dotterel Charadrius morinellus is a specialist high 
altitude and Arctic-breeding wader and can serve as an ideal model species for 
addressing habitat requirements of Arctic-breeding birds and consequences for 
conservation. We combined field surveys with remote sensing data to develop a 
distribution model for the breeding habitat of the Eurasian Dotterel in the Vin-
delfjällen Nature Reserve in northern Sweden. The remote sensing data comprised 
211 spectral, structural and topographic indices derived from freely available 
satellite images and digital elevation models. For species distribution modeling 
we used MaxEnt with an advanced variable and parameter selection method for 
model training. The trained model produced excellent results (AUC = 0.99) with 
seven resulting predictor variables reflecting the habitat requirements of the 
Dotterel: sparsely vegetated mountain tops with dry ground which are very 
open. This study further highlights the potential of combining survey data with 
freely available remote sensing data for detailed area-wide population predictions 
and the monitoring of habitat change as a tool in species conservation. 
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Fig. 1. Map showing the Vindelfjällen Nature Reserve with main study areas (A = Björkfjället, B = Kraipe), Dotterel 
nests and territories from 2016–2018 as well as independent observations (see Methods) and targeted surveys 
from 2019. Area of predicted suitable Dotterel breeding habitat according to our MaxEnt model, dropping the 
lowest 10th percentile with habitat suitability values >0.23 for niche delineation. Habitat suitability is given in four 
classes. Image source: Sentinel-2A satellite data (https://scihub.copernicus.eu) sampled on 2 Jul 2018.

https://scihub.copernicus.eu
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their present suitable breeding habitat within the next 70 
years, exceeding the impact of the Mid-Holocene climatic 
optimum. Several studies on Arctic-breeding shorebirds 
have reported contraction of breeding range and declines 
in population size (Scridel et al. 2017, Lehikoinen et al. 
2018, Ewing et al. 2020). Simultaneously, the ranges of 
generalist species and particularly predators are migrating 
further poleward, which increases competition for breeding 
habitat and predation pressure for specialized Arctic 
species (Callaghan et al. 2011). 

Gaining knowledge on how species may deal with changing 
habitat conditions requires detailed information of species 
habitat associations as a foundation for predicting their 
vulnerability. In addition, identifying areas with suitable 
habitat conditions is key to successful conservation 
planning (Saalfeld et al. 2013). Species breeding on the 
Arctic tundra often have vast distribution ranges in 
remote, largely inaccessible areas, resulting in limited 
applicability of commonly used census methods. Therefore, 
identifying a cost- and time-efficient method that is 
capable of identifying areas with suitable habitat conditions 
on large spatial scales is vital for the protection of these 
specialist species. 

Combining high-resolution remote sensing data with 
powerful machine-learning algorithms has great potential 
to serve as a tool for predicting area-wide species distri-
butions over large spatial scales (Lathrop et al. 2018, 
Leitão & Santos 2019). Taking advantage of the regular 
acquisition of satellite images enables us to predict and 
monitor habitat availability, changes and shifts by applying 
fitted models in subsequent years. Using limited pres-
ence-only data combined with a variety of remote sens-
ing-derived predictor variables has proven to be an efficient 
method to predict species distributions (Kerr & Ostrovsky 
2003, Leitão & Santos 2019). Maximum entropy (MaxEnt) 
modeling (Phillips et al. 2006) offers the opportunity to 
predict species distribution by presence-only data. 

Here, we applied a workflow that uses MaxEnt to predict 
the present breeding distribution of an Arctic specialist 
bird, the Eurasian Dotterel Charadrius morinellus (hereafter 
Dotterel) in the Vindelfjällen Nature Reserve in northern 
Sweden. The Dotterel serves as an ideal species to use for 
MaxEnt modeling as it is highly specialized to a narrow 
ecological niche. It also suffers from severe population 
declines at the edge of its range in the UK, where 
distribution shifts both geographically northwards and 
upwards in elevation are being observed (Huntley 2007, 
Eaton et al. 2015, Hayhow et al. 2015, Baxter 2016, Ewing 
et al. 2020). The decline of species at their distribution 
edges is known to indicate an overall decline in species 
populations (Hampe & Petit 2005, Vilà-Cabrera et al. 
2019). According to Huntley (2007), the Dotterel will 
lose the majority of its present European breeding distri-
bution by the end of the 21st century.  

We used our field data with Dotterel territories and nests 
from 2016, 2017 and 2018 as presence-only data for the 
modeling process. In this study, we aim to (1) define the 
most predictive remote sensing, data-derived variables 

and (2) give an accurate potential present distribution for 
the species within our study area, which is representative 
of Arctic ecosystems with associated breeding birds 
(Staafjord 2012, Svensson & Andersson 2013). The per-
formance of the model was validated by targeted surveys 
in areas with well-predicted habitat quality and independent 
field data provided by the Swedish bird-monitoring scheme. 

Establishing a large-scale habitat model, derived from 
limited field data (site occupancy of birds) and freely 
available remote sensing data enables the identification 
of areas of high conservation value for Dotterel. Our 
model will also allow us to monitor climate change-
induced habitat loss by repeatedly applying it on regularly 
acquired satellite images in subsequent years. It will 
further allow us to extrapolate a population size estimation 
with detailed species habitat associations. 

METHODS 

Study area 

The Vindelfjällen Nature Reserve (hereafter Vindelfjällen) 
is located in Swedish Lapland south of the Arctic Circle 
and close to the border with Norway (65.95°N, 16.20°E). 
It surrounds the village of Ammarnäs and covers an area 
of 5,500 km² (Fig. 1). It is one of the largest protected areas 
in Sweden and comprises an elevation gradient from 500 
m to 1,768 m asl with taiga forests in the valleys (coniferous 
and birch forests) and different types of Arctic tundra at 
higher elevations. The treeline is at ~800 m asl (Staafjord 
2012). The reserve is designated as an Important Bird 
Area (IBA) and Special Protected Area (SPA) for birds 
under the European Union’s Birds Directive (BirdLife 
International 2019). The main tundra habitats can be 
differentiated into four types: dry heathland, willow scrub, 
wet areas and alpine meadows (Svensson & Andersson 
2013). Targeted bird surveys have been carried out in all 
major habitats in Vindelfjällen annually since 1963 as part 
of the LUVRE project and the Swedish Bird Survey 
(https://www.luvre.lu.se/). Dotterels mainly occur within 
the higher parts of the reserve mostly comprising of alpine 
meadows. While Dotterel populations are declining in the 
UK (Hayhow et al. 2015, Ewing et al. 2020) their breeding 
numbers have been relatively stable both in Fennoscandia 
(Lindström et al. 2019) and Vindelfjällen (Svensson & 
Andersson 2013, own unpubl. data). Because of this, the 
Dotterel breeding population in Vindelfjällen is particularly 
suitable for this study. We limited our main study sites to 
two areas (Björkfjället and Kraipe; see Fig. 1) that together 
host approximately 30 breeding pairs of Dotterels. 

Study species 

The Dotterel is a medium-sized, long-distance migratory 
wader that breeds in Arctic-alpine tundra ranging from 
Scotland through Siberia to western Alaska with disjunct 
distributions in mountain ranges like the Alps (BirdLife 
International 2021).The alpine breeding habitat is char-
acterized by open, sparsely vegetated mountain plateaus 
and ridges with short grasses, mosses and lichen, with a 

https://www.luvre.lu.se/
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high proportion of bare ground, rocks and rocky debris 
(Fig. 2; Marchant et al. 1986, Galbraith et al. 1993, 
Whitfield 2002, Baxter 2016, Gejl 2017). 

Presence data: Dotterel surveys 

The two study areas within Vindelfjällen (ca. 10 km²; see 
Fig. 1) were intensively surveyed for territorial and 
breeding Dotterels for three consecutive years (2016–
2018). Both areas were visited 3–5 times per season, each 
visit comprising a full field day. The areas were surveyed 
by 3–6 persons, systematically walking in line 10–30 m 
apart, regularly scanning with binoculars for displaying 
birds or birds showing any breeding behavior (e.g. agonistic 
behavior, courtship behavior, distraction display, male 
and female feeding together). Only sightings of birds 
showing territorial or breeding behavior on the ground 
during the breeding season were included in the model – 
aerial displays were not included. Sampling effort was 
not necessarily consistent across seasons or years, but we 
consider this to have a negligible impact on our modeling 
approach due to its robustness towards variable sampling 
effort (see below). We found 23 Dotterel nests and 156 
locations with territories. Since the Dotterel is a highly 
specialized species, we assume that territory locations 
have similar habitat characteristics to nest locations. 
During fieldwork we regularly found nests within meters 
of where Dotterels were observed displaying on the 
ground. For these reasons, we used both territories and 
nests in the analysis and treated both as presence points. 
Territories less than 300 m apart were excluded from the 
analyses to minimize spatial autocorrelation and biasing 

the model by overrepresenting habitat preferences of 
birds in more intensively surveyed areas. We also deleted 
territorial points that were close (≤300 m) to nests from 
the same season to ensure independence between presence 
points. As the closest proximity of two nests in the same 
study area was less than 100 m, we chose the 300 m 
threshold to safely exclude pseudoreplicates of the same 
territorial pair. The final model was based on 48 presence 
points (23 nests and 25 territories). 

Environmental data 

Environmental data derived from remote sensing are fre-
quently used in species distribution modelling (e.g. Saalfeld 
et al. 2013, Gottwald et al. 2017, Montenegro et al. 2017) 
and provide the advantage of allowing area-wide predictions 
of habitat suitability for studied species. Here, satellite 
data and Digital Elevation Models (DEM) provide the 
opportunity to calculate multiple measures of environmental 
characteristics (Lathrop et al. 2018). 

In this study we used Sentinel-2A satellite data (https://sci-
hub.copernicus.eu/) sampled on 2 July 2018. We chose 
this date as it was the closest available dataset to the 
typical hatching date of Dotterel in the area and therefore 
is representative of the chick-rearing period. Insect avail-
ability (as a food source for chicks) is closely related to 
snow cover, vegetation patterns and phenology (Høye & 
Forchhammer 2008, Tulp & Schekkerman 2008). Moreover, 
the image from 2018 was chosen because it represents an 
average snow cover for this time of year. We calculated a 
comprehensive dataset of vegetation indices that have 

Fig. 2. Breeding Dotterel male in typical habitat with a composition of bare ground, short vegetation, moss cover and 
rocks (photo: Christian Hoefs).

https://scihub.copernicus.eu/
https://scihub.copernicus.eu/
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been found useful for vegetation mapping (Baugh & 
Groeneveld 2006, Puletti et al. 2017), based on formulae 
for Sentinel 2A products provided by the IndexDataBase 
(https://www.indexdatabase.de/db/is.php?sensor_id=96).  
In addition, we calculated a set of texture metrics (TM; 
Haralick et al. 1973) in a grey level co-occurrence matrix 
(GLCM), which hold further, valuable information for 
classifications (Lu et al. 2014, Kupidura 2019). These grey 
level textures particularly show similarities or differences 
in contrast, coarseness and patterns that are not necessarily 
represented by vegetation indices. They have proven to 
be especially useful as measures for local heterogeneity 
of vegetation patterns within land cover classes (Lu et al. 
2014, Kupidura 2019).  
Furthermore, we used a digital elevation model (European 
Digital Elevation Model: EU-DEM v.1.1) to calculate 
topographic variables: slope, aspect, curvature, the Mor-
phometric Protection Index, the Topographic Position 
Index and the Topographic Wetness Index with the SAGA-
GIS morphometry toolset (Conrad et al. 2015, Watkins 
2015). The final set of potential predictor variables for 
further modelling comprised 211 variables (42 spectral 
indices, 154 texture metrics and 15 topographic indices) 
in 10 m resolution. 

Modelling breeding habitat suitability for the 
Dotterel using MaxEnt 

We used MaxEnt (Phillips et al. 2006) for modelling dis-
tribution of Dotterel breeding habitat. MaxEnt modeling 
offers the opportunity to predict species distribution 
based on presence-only data by complementing these 
data points with a set of randomly selected background 
data points and is capable of handling many predictor 
variables (Phillips et al. 2006). Philipps & Dudik (2016) 
revealed that the performance of MaxEnt models increases 
with increasing background samples until it reaches a 
plateau at 8,000 samples.  
To represent the environmental conditions of potentially 
unsuitable habitats in the modeling procedure, we followed 
the recommendations of Philipps & Dudik (2008) and 
generated 8,000 background samples randomly distributed 
over the entire Nature Reserve. MaxEnt is very robust 
even with small datasets (Phillips et al. 2006) and variation 
in sampling effort, as long as the minimum distance 
between presence points is set to a coarser scale than pre-
dictor variables (Fourcade et al. 2014). We meet this con-
dition with the chosen 300 m minimum distance between 
presence points.  
MaxEnt has two main parameters that can be manipulated 
to increase or decrease the complexity of models: regular-
ization multiplier and feature classes. The regularization 
multiplier (beta-multiplier) is a positive numerical value 
that regulates how closely the resulting model will fit to 
the training data, with smaller values leading to a closer 
fit. The six feature classes provided in MaxEnt are mathe-
matical transformations of the environmental variables 
used in the model to allow complex relationships beyond 
linear regressions to be modeled (Merow et al. 2013). 

Default settings of feature classes and the regularization 
multiplier are based on experimental assessments of the 
model performance over 226 species from six regions 
(Phillips & Dudík 2008) but are not necessarily valid for 
other studies. Morales et al. (2017) showed that most pub-
lications used MaxEnt’s default settings without further 
testing of parameter configurations, which potentially leads 
to non-optimal and sometimes overly optimistic results. 

Besides internal MaxEnt parameters, selecting the best 
combination of uncorrelated predictor variables is a key 
problem in predictive modeling. In species distribution 
modeling (SDM) it is often addressed by pre-selecting 
environmental variables based on expert knowledge about 
the biology of the target species (Leitão & Santos 2019). 
However, this approach often leads to suboptimal or even 
misleading model results compared to feature selection 
procedures that filter a subset of uncorrelated and highly 
contributing variables from a bigger set of potentially 
predictive candidate features based on reiterative per-
formance tests (Warren & Seifert 2011, Zeng et al. 2016, 
Meyer et al. 2018).  

To select the best performing model for our case study 
we tested all potential combinations of feature classes, 
and included predictor variables using a recursive feature 
selection procedure that accounted for variable correlation 
(Gottwald et al. 2017). Therefore, we calculated an initial 
model where all variables with a model contribution 
below 2% were excluded from further analysis. In the 
next step, the best performing variable was identified and 
all variables that correlated higher than r = 0.7 with that 
variable were removed. To assess the performance of the 
model as well as each individual variable, a 10-fold cross 
validation was performed using 50% of the presence data 
as the training sample. The model performance was then 
estimated on the remaining test data sample by the area 
under the curve (AUC) and the corrected Akaike Infor-
mation Criterion (AICc; Warren & Seifert 2011). With 
the remaining set of variables, a new MaxEnt model was 
calculated. Variables with low contribution scores and 
remaining variables that were correlated to the variable 
of second-highest contribution were excluded. This process 
was repeated until a set of uncorrelated and highly con-
tributing variables was left. Regularization multipliers 
between 0.5 (potential of over-fitting) and 3 (potential of 
over-generalization) with increments of 0.5 were tested 
for each combination of feature classes and predictors to 
avoid potential over-fitting at too small multiplier values 
and over-generalizations at too high values. 

For the final model, we selected the one, which (1) con-
sidered fewer parameters than observation samples to 
avoid over-fitting, (2) showed the lowest AICc compared 
to models with equal parameter configurations and (3) 
had the highest average AUC on testing data among 
models selected based on lower AICc values. 

To control for the robustness of the selected predictor 
variables we calculated the mean of their contribution 
over all 19,330 model runs. To verify the applicability of 
the habitat suitability prediction, we conducted targeted 

https://www.indexdatabase.de/db/is.php?sensor_id=96
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surveys in areas predicted as suitable Dotterel habitat, in 
proximity to our regular field work areas in June 2019. To 
measure the predictive skill of the model we used inde-
pendent field data of 47 occurrence locations from surveys 
conducted by Martin Green and Sophie Ehnbom (Swedish 
Bird Survey) as part of the annual survey routes in Vin-
delfjällen which were conducted within the study sites. 
These observations were used to calculate the AUC value 
and the continuous Boyce index with the R packages 
dismo and ecospat, respectively (Di Cola et al. 2017, 
Hijmans et al. 2021). The Boyce index is a threshold-
independent evaluator for SDM predictions (Hirzel et al. 
2006, Di Cola et al. 2017), which considers random model 
performance and only requires presences, likely making 
it the most appropriate metric in the case of presence-
only models. Values vary between –1 and +1 with positive 
values indicating a model in which predictions are 
consistent with the distribution of presences, values close 
to zero indicating a random model and negative values 
indicating counter predictions (Hirzel et al. 2006). 

MaxEnt produces probability maps of species presence 
(scales of 0–1 or 0–100). However, in many applications, 
binary maps (0/1) are required. Therefore, a minimum 
probability threshold has to be identified, that divides the 
distribution into presence and absence. In a study with 
40 endemic mammals Escalante et al. (2013) showed that 
the 10th percentile of training presence was best suited 
for niche delineation. To define the spatial extent of 
potential Dotterel habitat we dropped all raster cells lower 
than the 10th percentile of the habitat suitability prediction 
values at training presence. 

All analyses and visualizations were performed with the 
open source software packages R (R Core Team 2020) 
and QGIS (QGIS Development Team 2021). 

RESULTS 

The best performing MaxEnt model for the Dotterel 
breeding habitat suitability was selected from 19,330 
models fitted using all potential combinations of feature 
classes and the applied multiplier range. It reached an 
overall test AUC of 0.998 based on a 10-fold cross-
validation with 50% test data and included the MaxEnt 
feature classes hinge, threshold, product and quadratic 
with 0.5 as beta-multiplier. Whilst the feature class 
threshold has been omitted from the default feature classes 
selection in the recent version of MaxEnt (Phillips et al. 
2017), the feature class linear was excluded in our case 
study. Instead of a beta-multiplier of 1, which is the 
default value in former and recent MaxEnt versions, our 
model selection procedure identified a beta-multiplier of 
0.5 as the best performing value. The best performance 
was achieved based on a small subset of seven out of 211 
initially provided environmental variables. Within the 
variable selection process, three spectral indices, two 
texture metrics and two topographic indices were selected 
as best performing predictor variables (Table 1). Redness 
Index 200 m mean and Sentinel band 8 TM difference 
variance sd 200 m showed the highest explanatory power 

(both 27.1%), followed by Chlorophyll Vegetation Index 
200 m mean (24%), Sentinel band 4 200 m mean (8.5%), 
Topographic Wetness Index (5.4%), Sentinel band 3 TM 
difference variance 200 m mean (4.1%) and Morphometric 
Protection Index 2,000 m (3.8%; see Table 1).  

With a mean AUC test of 0.98 and a standard deviation 
of 0.0016 over all models with a minimum AICc within 
the specific feature class settings, model results seem 
highly robust. The three best performing variables for the 
selected model had the highest mean contribution over 
all 19,330 model runs as well (Redness Index 200 m mean 
= 26%, Chlorophyll Vegetation Index 200 m mean = 13.7%, 
Sentinel band 8 TM difference variance sd 200 m = 13.6%). 
All other selected variables were among the 10% of best 
performing variables over all 19,330 model runs. 

The response curves (Fig. 3) show the relation of each 
variable’s contribution to the model with the respective 
probability of presence for the species. Chlorophyll Vegetation 
Index reached the highest probability of presence with 
values between 2.5 and 3 indicating a high chlorophyll 
content. Morphometric Protection and Topographic Wetness 
Index achieved highest probabilities for suitable Dotterel 
habitat with low values, gradually decreasing with increasing 
values. This indicates a high openness of the surroundings 
and relatively dry ground (see Table 1, Fig. 1 and Discussion) 
The Redness Index was most important at values ranging 
between –0.05 and 0.05. Texture Metrics (TM) for Sentinel 
band 3 Difference Variance 200 m mean had the highest 
probability with values between –0.25 and –0.05. Sentinel 
band 4 200 m mean had two peaks with values around 800 
and 1,500. Sentinel band 8 TM Difference Variance 200 m 
sd gained a higher probability of presence with increasing 
values from 0.12, reaching a plateau at 0.23 until 0.26. 

Performance measures showed excellent results, on both 
repetitively sampled 50% testing data from our field 
dataset used in the model selection procedure and the 
independent survey data that was not involved in the 
model selection procedure. The model gains further reli-
ability through validation with the independent test data 
(see Methods) with AUC = 0.993 as well as a Boyce-
Index = 0.863, which are both close to their potential 
maximum.  

The resulting habitat suitability values of the MaxEnt 
model ranged between >0.001 and 0.991 with a mean 
value of 0.004 ± 0.035. The spatial visualization of habitat 
suitability, with survey points and independent observations 
are presented in four classes in Fig. 1. The threshold 
value for the Dotterel’s niche delineation (see Methods) 
from habitat suitability values was 0.23, by dropping the 
lowest 10th percentile of values (Fig. 1). During our target 
surveys, we found eleven new territories and one nest 
within the predicted areas. Of 47 independent data points, 
43 were inside our delineated niche. The remaining four 
points were between 25 m and 500 m outside our predicted 
niche. 

The entire area with suitable Dotterel habitat within the 
Vindelfjällen Nature Reserve following our niche delineation 
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comprises 59.2 km², which is ca. 1.1% of the area of the 
Nature Reserve. With approximately 30 pairs (own unpubl. 
data) within the delineated niche area that we have 
surveyed well (ca. 10 km²), the breeding population of 
Dotterels in the entire Nature Reserve can be roughly 
extrapolated to approximately 180 pairs, given equal dis-
tribution over the predicted suitable breeding habitats. 

DISCUSSION 

Model performance 

The model based on the seven remote sensing-derived 
predictor variables achieved a very high performance 
and seemed to hold important information serving as 
proxies for the Dotterel breeding niche´s ecological 
features. Parameter configurations of the best performing 
model differ from MaxEnt’s former (Phillips & Dudík 
2008) as well as recently adjusted (Phillips et al. 2017) 
default settings. Additionally, the best performing model 
was achieved based on a small subset of seven out of 211 
initially provided environmental variables. The variable 
selection process for the model chose variables such as 
texture metrics whose interpretation is not straightforward. 
Therefore, their inclusion might not have been considered 
based on expert knowledge only. Some obvious variables 
missing in the model were either neglected in the variable 

selection due to negligible contribution or because of 
correlation with other variables. For example, altitude, 
slope and exposure are variables that are commonly used 
in SDMs, but seem to be outperformed by the set of 
indices that were used in our model. These findings 
confirm the necessity of the implementation of sophisticated 
parameter and variable selection procedures to obtain 
the best model results.  

Implications of modelling suitable breeding habitat 
of Dotterels 

Our results show that MaxEnt is capable of predicting 
the distribution patterns for the ecological niche of the 
Dotterel inhabiting the alpine ridges of the Arctic tundra 
in our study area. With seven remote sensing-derived 
predictor variables, we successfully predicted an area-
wide habitat distribution in a representative spatial context 
with a high resolution (10 x 10 m).  

The Chlorophyll Vegetation Index uses a near infrared by 
green band reflectance ratio to measure leaf chlorophyll 
concentration and combines this with a correction factor 
for varying vegetation cover or density (Vincini et al. 
2008). It is therefore predictive of sparse or patchy vege-
tation as it occurs in preferred Dotterel habitat (Galbraith 
et al. 1993). The index had a major contribution to the 
model with values between 2.5 and 3.5, which corresponds 

Fig. 3. Response curves for each variable used in the MaxEnt model showing the probability of presence of each variable 
depending on its value.
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Table 1. Selected variables in the best performing MaxEnt model to predict breeding habitat suitability of the Dotterel. 
Formulae were taken from the IndexDataBase IDB (https://www.indexdatabase.de/db/is.php?sensor_id=96). S indicates 
the respective Sentinel-2A band.

Predictor  
variable

Definition
Ecological  

significance
Contribution  
to model (%)

Redness Index  
200 m mean

Mean normalized difference of red and 
green band within 200 m window  

(Liu et al. 2018).

Ambiguous meaning as high values 
correlate with leaf senescence and 

dead vegetation but also bare soil (Liu 
et al. 2018). Coinciding high values of 

redness and CVI indicate sparse 
vegetation. Prey are more easily 
detected in sparse vegetation.

27.1

S08 TM Difference  
Variance 200 m sd

SD of texture metric for local 
heterogeneity within a 200 m grey level 

co-occurrence matrix (GLCM) of 
Sentinel band 8 (near infra-red – NIR). 

Defines the local heterogeneity by 
giving more weight to differing 

intensity level pairs (Haralick et al. 1973, 
Zwanenburg et al. 2020). High values 

(sd) ≙ high differences in local 
heterogeneity and vice versa.

The combination of NIR and green 
band carries information on ground 
vegetation. Variance in these bands 

codes variance in ground cover. 
Dotterels select for high heterogeneity 
(patchiness) in ground cover patterns.

27.1

Chlorophyll  
Vegetation  
Index (CVI)  
200 m mean

Mean of Chlorophyll content in the 
vegetation within a 200 m cell (Vincini 

et al. 2008) based on NIR, red and  
green bands, corrected for patches  

of bare ground.

Identifies greening vegetation with 
high chlorophyll content even when 

interspersed with rocks or plant debris. 
Variable most linked to vegetation 

phenology. Hatching dates might be 
timed to vegetation phenology.

24.0

S04 200 m  
mean

Mean reflection of red band  
(Sentinel band 4) in a 200 m window.

Similar to redness index but less 
specific. 8.5

Topographic  
Wetness Index

Combines local upslope contributing 
area and slope to indicate the potential 
of runoff generation within catchment 

area. (Sørensen et al. 2006, Besnard  
et al. 2013).

High values indicate high potential for 
runoff generation and vice versa, highly 
correlated with soil moisture. Dotterels 

prefer flat, gently sloping ridges 
(Galbraith et al. 1993) with low runoff.

5.4

S03 TM Difference  
Variance 200 m  
mean

Texture metric for local heterogeneity 
within a 200 m grey level  

co-occurrence matrix (GLCM) of 
Sentinel band 3 (green band). Defines 

the local heterogeneity by giving more 
weight to differing intensity level pairs 
(Haralick et al. 1973, Zwanenburg et al.  

2020). High values ≙ high local 
heterogeneity and vice versa.

The combination of NIR and green 
band carries information on ground 
vegetation. Variance in these bands 

codes variance in ground cover. 
Dotterels select for high heterogeneity 
(patchiness) in ground cover patterns.

4.1

Morphometric  
Protection Index  
2,000 m

Algorithm that evaluates the 
protection or openness of a cell 
(Yokoyama & Pike 2002) in eight 

directions within a given radius (here 
2,000 m) as a mean value. Low value ≙ 

low protection and high openness high 
value ≙ high protection and low 

openness (Watkins 2015).

Dotterels prefer exposed, elevated 
spots which are close to their  

preferred exposed foraging habitat, 
corresponding to low values of 

morphometric protection index.

3.8

https://www.indexdatabase.de/db/is.php?sensor_id=96
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to the highest quantile of CVI values attained in the study 
area (see Fig. 3). This implies a high chlorophyll concen-
tration that represents the alpine meadows with their 
greening vegetation at the beginning of July, the acquisi-
tion date of the satellite images. 

The Redness Index is the normalized difference between 
visible red and green band and is therefore a rather 
unspecific remote sensing product. It has been shown to 
be highly correlated with leaf senescence (Liu et al. 2018) 
and dead vegetation, but has also been successfully applied 
to monitor and predict bare soil and ground patterns 
(Mathieu et al. 1998). In the study area, the –0.18 isopleth 
of the redness index aligns well with the tree line. 
Maximum redness values close to or above zero occur on 
dry ridges with alpine meadows or unvegetated scree 
fields. Dotterels select for high redness values, yet due to 
its ambiguity, the redness index needs to be interpreted 
in combination with the CVI to understand dotterel pref-
erences regarding ground vegetation type and phenology. 
Dotterels prefer areas where both indices are high, i.e. 
where vegetation is greening when their chicks hatch in 
the beginning of July, but at the same time is rather 
sparse and interspersed with rocks and plant debris from 
the previous summer. Dotterels may select habitats with 
sparse vegetation because prey are more easily detected. 
In our study areas males do most of the breeding and 
chick rearing (pers. obs.) and therefore can only make 
short foraging bouts and have to be extra vigilant, making 
it preferable to select breeding areas where prey are easily 
detected (Byrkjedal 1989, Holt et al. 2002). 

The Morphometric Protection Index had the highest prob-
ability of occurrence with low values, which represent 
low protection and high openness of the surrounding 
area. This reflects a well-known component of the habitat 
of Dotterels, which prefer to nest on exposed, flat and 
gently sloping ridges (Galbraith et al. 1993, Holt 2002). 
Nesting in proximity to preferred foraging habitat that 
consists of exposed plant communities may play an impor-
tant role for Dotterel nest site selection (Galbraith et al. 
1993). The same applies to the Topographic Wetness Index, 
which contributes most with low values (Fig. 3). This 
implies a higher probability of presence on bare, dry 
ground that has been shown to be an important factor 
for the habitat of Dotterels (Galbraith et al. 1993).  

The importance of the texture metric (Sentinel band 3 
Difference Variance 200 m mean) indicates that local het-
erogeneity reflected in the green band does a good job at 
predicting suitable Dotterel habitat. The higher the 
reflectance heterogeneity, the higher the probability of 
presence for the Dotterel. The same is true for Sentinel 
band 8 Difference Variance 200 m sd: with an increasing 
standard deviation of local heterogeneity in the NIR 
band, the probability of presence increases. This implies 
an importance of heterogeneity within the cells: adjacent 
pixels within a 200 m cell have differing patterns, which 
creates a patchy mosaic within the cells. The habitat is 
characterized by a mosaic of bare ground, dead and green 
vegetation patterns that underlie differing environmental 

circumstances such as (permafrost) soil, snow melt, wind 
and rain exposition, rock cover etc. (Fig. 2). These locally 
heterogeneous patterns of differing vegetation cover and 
phenology, moss and lichen cover, bare ground, scattered 
rocks and debris are well-described as distinctive features 
of Dotterel habitat (e.g. Nethersole-Thompson 1972, 
Baxter 2016, Wiersma & Kirwan 2020). Breeding sites 
with higher small-scale heterogeneity may be selected 
because of proximity to preferred foraging habitats, the 
heterogeneous zone where bog and moss-heath intergrade, 
and a more diverse selection of prey items occur (Galbraith 
et al. 1993, Holt 2002). Consequently, breeding in het-
erogeneous habitats may play an important role in chick 
rearing, as the chicks can be easily guided to preferred 
foraging habitats. Heterogeneous habitats on the edge of 
bogs may also offer shelter and camouflage for the chicks, 
so they can be more easily hidden from bad weather and 
potential predators (Galbraith et al. 1993, Holt 2002). 
Similarly, European Golden Plover Pluvialis apricaria 
chicks in Vindelfjällen have been shown to prefer habitats 
with higher cover (willow scrub) possibly to minimize 
the risk of predation (Machin et al. 2019). 

The availability of suitable breeding habitat for specialist 
species like the Dotterel on alpine plateaus within the 
Arctic tundra may decrease significantly in the future 
(Ewing et al. 2020). Small changes in environmental vari-
ables can have significant impacts on highly specialist 
species, whereas generalist species may adapt more easily 
and expand their range to new areas (Callaghan et al. 
2011). The habitat composition within the Dotterel’s 
present breeding range is predicted to change rapidly 
within the next decades, as is pointed out in studies on 
other Arctic-breeding species (Huntley 2007, Virkkala et 
al. 2014, Hayhow et al. 2015, Lindström et al. 2015). Alti-
tudinal vegetation composition in mountain ranges has 
been shown to change as a consequence of several factors, 
for example climate change, grazing pressure and nitrogen 
deposition (Galbraith et al. 1993, Baxter 2016, Steinbauer 
et al. 2018). Consequentially, the openness of the Dotterel 
breeding habitat may decrease as taller shrubs and trees 
start growing higher on the tundra. Similarly, the habitat 
heterogeneity may decrease, with larger patches being 
covered by single species (e.g. dwarf birch or willows in 
our study area; pers. obs.).  

Applying the model on a larger scale: implications 
for conservation 

We used our model to estimate the population size in the 
entire Vindelfjällen Nature Reserve and predicted available 
suitable nesting habitat in approximately 1% of Vindelfjällen. 
When extrapolating our model results, this leads to a 
prediction of approximately 180 Dotterel nests/territories 
in the Nature Reserve. Given the high model performance 
and positive evaluation, this may be an accurate estimate 
of the size of the total breeding population of Dotterels in 
Vindelfjällen. The estimated population size for the Nature 
Reserve is equivalent to 4–9 % of the Swedish population 
estimate of 3,600 pairs (2,025–4,675; Ottosson et al. 2012). 
Ottosson et al. (2012) predicted the population of Lycksele 
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Lappmark county, where Vindelfjällen is situated, at 270 
pairs. As the Vindelfjällen Nature Reserve comprises 
around 70% of the potentially suitable Arctic tundra 
above the treeline within Lycksele Lappmark, our extrap-
olation is well in line with that estimate. This is only a 
‘back-of-the-envelope’ calculation, but the congruence 
with Ottosson et al.’s (2012) numbers shows that extrap-
olating ground surveys with detailed models on species 
habitat associations offers great potential for estimating 
population sizes in vast, inaccessible areas. For more 
detailed population predictions, a sensitivity analysis 
should investigate whether the threshold selection measure 
influences the predicted population size, to identify a 
robust estimation that is independent of the method used 
to delineate the species niche.  

With detailed population surveys within the predicted 
Dotterel habitat, our model has great potential to serve as 
a tool for population estimations within bird monitoring 
schemes. Population densities however, should be validated 
by field surveys in different parts of the study species’ 
distribution. With freely available satellite images and 
elevation models, our modeling approach may be applied 
to an arbitrarily large spatial context after further verification 
in other areas. This may have particular advantages over 
current population estimation methods that either use 
simple extrapolations without detailed species habitat 
associations, or have small sample sizes, possibly leading 
to high inaccuracies. To correctly estimate loss of suitable 
breeding habitat and population declines over larger 
scales, we advocate combining our model with climate-
sensitive process-based vegetation models (e.g. Zhang et 
al. 2013). Using a time series of satellite images, our 
model can help to assess the quality of population estimates 
in a very time- and cost-efficient way. This is of particular 
interest considering the rapid climate change-driven 
changes in montane ecosystems, particularly in the Arctic 
(Chamberlain et al. 2013, Scridel et al. 2018). Since the 
Dotterel is a highly specialized species with a narrow 
ecological niche, predictions of suitable breeding habitat 
using remote sensing data are relatively straightforward. 
Our modelling approach should be verified with other, 
more generalist species in different study areas to assess 
the breadth of potential ecotypes. Niche delineation might 
be harder and prediction power thus lower for more gen-
eralist species. We highly recommend repeating the model 
evaluation process with independent data whenever apply-
ing the model to other areas or species. 

Applying the distribution models presented here to more 
species in different areas will increase our knowledge of 
the present distribution of species. With future research, 
distribution patterns may be combined with climate 
change models, allowing detailed predictions of shifts in 
availability of suitable breeding habitat and consequent 
changes in population size for Arctic-breeding shorebirds 
of conservation concern. 
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Table S1. Remote sensing data derived indices as input for the variable selection procedure (see Methods). The dataset 
comprised 42 spectral indices, 154 texture metrics and 15 topographic indices.
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Abbreviation Name

ARVIidx Atmospherically Resistant Vegetation Index

ARVIidx_200m_mean Atmospherically Resistant Vegetation Index 200m standard deviation

ARVIidx_200m_sd Atmospherically Resistant Vegetation Index 200m mean

B02    Sentinel Band 2

B02_200m_mean Sentinel Band 200m mean

B03    Sentinel Band 3

B03_200m_mean Sentinel Band 3 200m mean

B03_200m_sd    Sentinel Band 3 200m standard deviation

B04    Sentinel Band 4

B04_200m_mean Sentinel Band 4 200m mean

B04_200m_sd  Sentinel Band 4 200m standard deviation

B08   Sentinel Band 8

B08_200m_mean Sentinel Band 8 200m mean

B08_200m_sd    Sentinel Band 8 200m standard deviation

BWDRVIidx      Blue-wide dynamic range vegetation index

BWDRVIidx_200m_mean Blue-wide dynamic range vegetation index mean

BWDRVIidx_200m_sd Blue-wide dynamic range vegetation index 200m standard deviation

CVIidx  Chlorophyll Vegetation Index

CVIidx_200m_mean Chlorophyll Vegetation Index 200m mean

CVIidx_200m_sd Chlorophyll Vegetation Index 200m standard deviation

EVIidx Enhanced Vegetation Index

EVIidx_200m_mean Enhanced Vegetation Index 200m mean

EVIidx_200m_sd Enhanced Vegetation Index 200m standard deviation

EVIidx2_200m_mean Enhanced Vegetation Index 2 200m mean

EVIidx2_200m_sd Enhanced Vegetation Index 2 200m standard deviation

green_leaf_idx Grean Leaf Index

green_leaf_idx_200m_mean Grean Leaf Index 200m mean

green_leaf_idx_200m_sd Grean Leaf Index 200m standard deviation

intensity_idx Intensity Index

intensity_idx_200m_mean Intensity Index 200m mean

intensity_idx_200m_sd Intensity Index 200m standard deviation

NDVIidx Normalized Difference Vegetation Index

NDVIidx_200m_mean Normalized Difference Vegetation Index 200m mean

NDVIidx_200m_sd Normalized Difference Vegetation Index 200m standard deviation

redness_idx Redness Index

redness_idx_200m_mean Redness Index

redness_idx_200m_sd Redness Index

rgb_shape_idx Colour and Shape Index

rgb_shape_idx_200m_sd Colour and Shape Index 200m standard deviation

VVIidx Visible Vegetation Index

VVIidx_200m_mean Visible Vegetation Index 200m mean

VVIidx_200m_sd Visible Vegetation Index 200m standard deviation
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Table S1, continued
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Abbreviation Name

slope Slope

slope_100_mean Slope 100m mean

topographic_position_ind_ex1000 Topographic Position Index 1000m

topographic_position_ind_ex2000 Topographic Position Index 2500m

topographic_position_ind_ex250 Topographic Position Index 250m

topographic_wetness_idx_0 Topographic Wetness Index

topographic_wetness_idx_1 Topographic Wetness Index 200 m

aspect Aspect

aspect_100_mean Aspect 100m mean

protection1000_resamp Morphometric Protection Index 1000m

protection2000_resamp Morphometric Protection Index 2000m

protection250_resamp Morphometric Protection Index 250m

dem Digital Elevation Model

curvature Curvature

curvature_100_mean Curvature 100m mean
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B03_hara_ASM    0.0355 Sentinel Band 3 Haralick Angular Second Moment

B03_hara_ASM_200m_mean Sentinel Band 3 Haralick Angular Second Moment  200 m mean

B03_hara_ASM_200m_sd Sentinel Band 3 Haralick Angular Second Moment  200 m standard deviation

B03_hara_Contr  0.0043 Sentinel Band 3 Haralick Contrast

B03_hara_Contr_200m_mean Sentinel Band 3 Haralick Contrast 200 m mean

B03_hara_Contr_200m_sd Sentinel Band 3 Haralick Contrast 200 m standard deviation

B03_hara_Corr   0.0535 Sentinel Band 3 Haralick Correlation

B03_hara_Corr_200m_mean Sentinel Band 3 Haralick Correlation 200 m mean

B03_hara_Corr_200m_sd Sentinel Band 3 Haralick Correlation 200 m standard deviation

B03_hara_DE     0.1521 Sentinel Band 3 Haralick Difference Entropy

B03_hara_DE_200m_mean Sentinel Band 3 Haralick Difference Entropy 200 m mean

B03_hara_DE_200m_sd Sentinel Band 3 Haralick Difference Entropy 200 m standard deviation

B03_hara_DV     0.1465 Sentinel Band 3 Haralick Difference Variance

B03_hara_DV_200m_mean Sentinel Band 3 Haralick Difference Variance 200 m mean

B03_hara_DV_200m_sd Sentinel Band 3 Haralick Difference Variance 200 m standard deviation

B03_hara_Entr   0.0077 Sentinel Band 3 Haralick Entropy

B03_hara_Entr_200m_mean Sentinel Band 3 Haralick Entropy 200 m mean

B03_hara_Entr_200m_sd Sentinel Band 3 Haralick Entropy 200 m standard deviation

B03_hara_IDM    0.0368 Sentinel Band 3 Haralick Inverse Difference Moment

B03_hara_IDM_200m_mean Sentinel Band 3 Haralick Inverse Difference Moment 200 m mean

B03_hara_IDM_200m_sd Sentinel Band 3 Haralick Inverse Difference Moment 200 m standard deviation

B03_hara_MOC.1  0.0227 Sentinel Band 3 Haralick Information Measures of Correlation 1

B03_hara_MOC.1_200m_mean Sentinel Band 3 Haralick Information Measures of Correlation 1 200 m mean

B03_hara_MOC.1_200m_sd Sentinel Band 3 Haralick Information Measures of Correlation 1 200 m standard deviation

B03_hara_MOC.2  0.0465 Sentinel Band 3 Haralick Information Measures of Correlation 2

B03_hara_MOC.2_200m_mean Sentinel Band 3 Haralick Information Measures of Correlation 2 200 m mean

B03_hara_MOC.2_200m_sd Sentinel Band 3 Haralick Information Measures of Correlation 2 200 m standard deviation
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Table S1, continued
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Abbreviation Name

B03_hara_SA     0.0479 Sentinel Band 3 Haralick Sum Average

B03_hara_SA_200m_mean Sentinel Band 3 Haralick Sum Average 200 m mean

B03_hara_SA_200m_sd Sentinel Band 3 Haralick Sum Average 200 m standard deviation

B03_hara_SE     0.0050 Sentinel Band 3 Haralick Sum Entropy

B03_hara_SE_200m_mean Sentinel Band 3 Haralick Sum Entropy 200 m mean

B03_hara_SE_200m_sd Sentinel Band 3 Haralick Sum Entropy 200 m standard deviation

B03_hara_SV     0.0002 Sentinel Band 3 Haralick Sum Variance

B03_hara_SV_200m_mean Sentinel Band 3 Haralick Sum Variance 200 m mean

B03_hara_SV_200m_sd Sentinel Band 3 Haralick Sum Variance 200 m standard deviation

B03_hara_Var    0.0001 Sentinel Band 3 Haralick Variance

B03_hara_Var_200m_mean Sentinel Band 3 Haralick Variance 200 m mean

B03_hara_Var_200m_sd Sentinel Band 3 Haralick Variance 200 m standard deviation

B08_hara_ASM    0.0089 Sentinel Band 8 Haralick Angular Second Moment

B08_hara_ASM_200m_mean Sentinel Band 8 Haralick Angular Second Moment  200 m mean

B08_hara_ASM_200m_sd Sentinel Band 8 Haralick Angular Second Moment  200 m standard deviation

B08_hara_Contr  0.0000 Sentinel Band 8 Haralick Contrast

B08_hara_Contr_200m_mean Sentinel Band 8 Haralick Contrast 200 m mean

B08_hara_Contr_200m_sd Sentinel Band 8 Haralick Contrast 200 m standard deviation

B08_hara_Corr   0.2416 Sentinel Band 8 Haralick Correlation

B08_hara_Corr_200m_mean Sentinel Band 8 Haralick Correlation 200 m mean

B08_hara_Corr_200m_sd Sentinel Band 8 Haralick Correlation 200 m standard deviation

B08_hara_DE     0.0335 Sentinel Band 8 Haralick Difference Entropy

B08_hara_DE_200m_mean Sentinel Band 8 Haralick Difference Entropy 200 m mean

B08_hara_DE_200m_sd Sentinel Band 8 Haralick Difference Entropy 200 m standard deviation

B08_hara_DV     0.0573 Sentinel Band 8 Haralick Difference Variance

B08_hara_DV_200m_mean Sentinel Band 8 Haralick Difference Variance 200 m mean

B08_hara_DV_200m_sd Sentinel Band 8 Haralick Difference Variance 200 m standard deviation

B08_hara_Entr   0.0000 Sentinel Band 8 Haralick Entropy

B08_hara_Entr_200m_mean Sentinel Band 8 Haralick Entropy 200 m mean

B08_hara_Entr_200m_sd Sentinel Band 8 Haralick Entropy 200 m standard deviation

B08_hara_IDM    0.0103 Sentinel Band 8 Haralick Inverse Difference Moment

B08_hara_IDM_200m_mean Sentinel Band 8 Haralick Inverse Difference Moment 200 m mean

B08_hara_IDM_200m_sd Sentinel Band 8 Haralick Inverse Difference Moment 200 m standard deviation

B08_hara_MOC.1  0.0306 Sentinel Band 8 Haralick Information Measures of Correlation 1

B08_hara_MOC.1_200m_mean Sentinel Band 8 Haralick Information Measures of Correlation 1 200 m mean

B08_hara_MOC.1_200m_sd Sentinel Band 8 Haralick Information Measures of Correlation 1 200 m standard deviation

B08_hara_MOC.2  0.0679 Sentinel Band 8 Haralick Information Measures of Correlation 2

B08_hara_MOC.2_200m_mean Sentinel Band 8 Haralick Information Measures of Correlation 2 200 m mean

B08_hara_MOC.2_200m_sd Sentinel Band 8 Haralick Information Measures of Correlation 2 200 m standard deviation

B08_hara_SA     0.0496 Sentinel Band 8 Haralick Sum Average

B08_hara_SA_200m_mean Sentinel Band 8 Haralick Sum Average 200 m mean

B08_hara_SA_200m_sd Sentinel Band 8 Haralick Sum Average 200 m standard deviation
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Table S1, continued
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B08_hara_SE     0.0199 Sentinel Band 8 Haralick Sum Entropy

B08_hara_SE_200m_mean Sentinel Band 8 Haralick Sum Entropy 200 m mean

B08_hara_SE_200m_sd Sentinel Band 8 Haralick Sum Entropy 200 m standard deviation

B08_hara_SV     0.0731 Sentinel Band 8 Haralick Sum Variance

B08_hara_SV_200m_mean Sentinel Band 8 Haralick Sum Variance 200 m mean

B08_hara_SV_200m_sd Sentinel Band 8 Haralick Sum Variance 200 m standard deviation

B08_hara_Var    0.0001 Sentinel Band 8 Haralick Variance

B08_hara_Var_200m_mean Sentinel Band 8 Haralick Variance 200 m mean

B08_hara_Var_200m_sd Sentinel Band 8 Haralick Variance 200 m standard deviation

B04_hara_ASM    0.1273 Sentinel Band 4 Haralick Angular Second Moment

B04_hara_ASM_200m_mean Sentinel Band 4 Haralick Angular Second Moment  200 m mean

B04_hara_ASM_200m_sd Sentinel Band 4 Haralick Angular Second Moment  200 m standard deviation

B04_hara_Contr   0 Sentinel Band 4 Haralick Contrast

B04_hara_Contr_200m_mean Sentinel Band 4 Haralick Contrast 200 m mean

B04_hara_Contr_200m_sd Sentinel Band 4 Haralick Contrast 200 m standard deviation

B04_hara_Corr   0.1353 Sentinel Band 4 Haralick Correlation

B04_hara_Corr_200m_mean Sentinel Band 4 Haralick Correlation 200 m mean

B04_hara_Corr_200m_sd Sentinel Band 4 Haralick Correlation 200 m standard deviation

B04_hara_DE     0.4402 Sentinel Band 4 Haralick Difference Entropy

B04_hara_DE_200m_mean Sentinel Band 4 Haralick Difference Entropy 200 m mean

B04_hara_DE_200m_sd Sentinel Band 4 Haralick Difference Entropy 200 m standard deviation

B04_hara_DV     0.0647 Sentinel Band 4 Haralick Difference Variance

B04_hara_DV_200m_mean Sentinel Band 4 Haralick Difference Variance 200 m mean

B04_hara_DV_200m_sd Sentinel Band 4 Haralick Difference Variance 200 m standard deviation

B04_hara_Entr   0.0018 Sentinel Band 4 Haralick Entropy

B04_hara_Entr_200m_mean Sentinel Band 4 Haralick Entropy 200 m mean

B04_hara_Entr_200m_sd Sentinel Band 4 Haralick Entropy 200 m standard deviation

B04_hara_IDM    0.1258 Sentinel Band 4 Haralick Inverse Difference Moment

B04_hara_IDM_200m_mean Sentinel Band 4 Haralick Inverse Difference Moment 200 m mean

B04_hara_IDM_200m_sd Sentinel Band 4 Haralick Inverse Difference Moment 200 m standard deviation

B04_hara_MOC.1  0.0587 Sentinel Band 4 Haralick Information Measures of Correlation 1

B04_hara_MOC.1_200m_mean Sentinel Band 4 Haralick Information Measures of Correlation 1 200 m mean

B04_hara_MOC.1_200m_sd Sentinel Band 4 Haralick Information Measures of Correlation 1 200 m standard deviation

B04_hara_MOC.2  0.0421 Sentinel Band 4 Haralick Information Measures of Correlation 2

B04_hara_MOC.2_200m_mean Sentinel Band 4 Haralick Information Measures of Correlation 2 200 m mean

B04_hara_MOC.2_200m_sd Sentinel Band 4 Haralick Information Measures of Correlation 2 200 m standard deviation

B04_hara_SA     0.0844 Sentinel Band 4 Haralick Sum Average

B04_hara_SA_200m_mean Sentinel Band 4 Haralick Sum Average 200 m mean

B04_hara_SA_200m_sd Sentinel Band 4 Haralick Sum Average 200 m standard deviation

B04_hara_SE     0.0336 Sentinel Band 4 Haralick Sum Entropy

B04_hara_SE_200m_mean Sentinel Band 4 Haralick Sum Entropy 200 m mean

B04_hara_SE_200m_sd Sentinel Band 4 Haralick Sum Entropy 200 m standard deviation
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Table S1, continued
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B04_hara_SV     0.0356 Sentinel Band 4 Haralick Sum Variance

B04_hara_SV_200m_mean Sentinel Band 4 Haralick Sum Variance 200 m mean

B04_hara_SV_200m_sd Sentinel Band 4 Haralick Sum Variance 200 m standard deviation

B04_hara_Var    0.0000 Sentinel Band 4 Haralick Variance

B04_hara_Var_200m_mean Sentinel Band 4 Haralick Variance 200 m mean

B04_hara_Var_200m_sd Sentinel Band 4 Haralick Variance 200 m standard deviation

B02_hara_ASM    0.0766 Sentinel Band 2 Haralick Angular Second Moment

B02_hara_ASM_200m_mean Sentinel Band 2 Haralick Angular Second Moment  200 m mean

B02_hara_ASM_200m_sd Sentinel Band 2 Haralick Angular Second Moment  200 m standard deviation

B02_hara_Contr  0.1326 Sentinel Band 2 Haralick Contrast

B02_hara_Contr_200m_mean Sentinel Band 2 Haralick Contrast 200 m mean

B02_hara_Contr_200m_sd Sentinel Band 2 Haralick Contrast 200 m standard deviation

B02_hara_Corr   0.2370 Sentinel Band 2 Haralick Correlation

B02_hara_Corr_200m_mean Sentinel Band 2 Haralick Correlation 200 m mean

B02_hara_Corr_200m_sd Sentinel Band 2 Haralick Correlation 200 m standard deviation

B02_hara_DE     0.0577 Sentinel Band 2 Haralick Difference Entropy

B02_hara_DE_200m_mean Sentinel Band 2 Haralick Difference Entropy 200 m mean

B02_hara_DE_200m_sd Sentinel Band 2 Haralick Difference Entropy 200 m standard deviation

B02_hara_DV     0.0484 Sentinel Band 2 Haralick Difference Variance

B02_hara_DV_200m_mean Sentinel Band 2 Haralick Difference Variance 200 m mean

B02_hara_DV_200m_sd Sentinel Band 2 Haralick Difference Variance 200 m standard deviation

B02_hara_Entr   0.0032 Sentinel Band 2 Haralick Entropy

B02_hara_Entr_200m_mean Sentinel Band 2 Haralick Entropy 200 m mean

B02_hara_Entr_200m_sd Sentinel Band 2 Haralick Entropy 200 m standard deviation

B02_hara_IDM    0.0030 Sentinel Band 2 Haralick Inverse Difference Moment

B02_hara_IDM_200m_mean Sentinel Band 2 Haralick Inverse Difference Moment 200 m mean

B02_hara_IDM_200m_sd Sentinel Band 2 Haralick Inverse Difference Moment 200 m standard deviation

B02_hara_MOC.1  0.0323 Sentinel Band 2 Haralick Information Measures of Correlation 1

B02_hara_MOC.1_200m_sd Sentinel Band 2 Haralick Information Measures of Correlation 1 200 m standard deviation

B02_hara_MOC.2  0.0909 Sentinel Band 2 Haralick Information Measures of Correlation 2

B02_hara_MOC.2_200m_sd Sentinel Band 2 Haralick Information Measures of Correlation 2 200 m standard deviation

B02_hara_SA     0.9080 Sentinel Band 2 Haralick Sum Average

B02_hara_SA_200m_mean Sentinel Band 2 Haralick Sum Average 200 m mean

B02_hara_SA_200m_sd Sentinel Band 2 Haralick Sum Average 200 m standard deviation

B02_hara_SE     0.0205 Sentinel Band 2 Haralick Sum Entropy

B02_hara_SE_200m_mean Sentinel Band 2 Haralick Sum Entropy 200 m mean

B02_hara_SE_200m_sd Sentinel Band 2 Haralick Sum Entropy 200 m standard deviation

B02_hara_SV     0e+00 Sentinel Band 2 Haralick Sum Variance

B02_hara_SV_200m_mean Sentinel Band 2 Haralick Sum Variance 200 m mean

B02_hara_SV_200m_sd Sentinel Band 2 Haralick Sum Variance 200 m standard deviation

B02_hara_Var    0.0011 Sentinel Band 2 Haralick Variance

B02_hara_Var_200m_mean Sentinel Band 2 Haralick Variance 200 m mean

B02_hara_Var_200m_sd Sentinel Band 2 Haralick Variance 200 m standard deviation
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